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Sliding Mode Control with Fuzzy Adaptive Perturbation 
Compensator for 6-DOF Parallel Manipulator 
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This paper proposes a sliding mode controller with fuzzy adaptive perturbation compensator 

(FAPC)  to get a good control performance and reduce the chatter. The proposed algorithm can 

reduce the chattering because the proposed fuzzy adaptive perturbation compensator compensa- 

tes the perturbation terms. The compensator computes the control input for compensating 

unmodeled dynamic terms and disturbance by using the observer-based fuzzy adaptive network 

(FAN) .  The weighting parameters of the compensator are updated by on-l ine  adaptive scheme 

in order to minimize the estimation error and the estimation velocity error of each actuator. 

Therefore, the combination of sliding mode control and fuzzy adaptive network gives the robust 

and intelligent routine to get a good control performance. To evaluate the control performance 

of the proposed approach, tracking control is experimentally carried out for the hydraulic 

motion platform which consists of a 6 - D O F  parallel manipulator.  

Key Words:6-DOF Parallel Manipulator,  Sliding Mode Control,  Fuzzy Adaptive 

Perturbation Compensator, Observer-Based Fuzzy Adaptive Network 

1. I n t r o d u c t i o n  

Sliding mode control (SMC) is very attractive 

method for nonlinear systems (Hashimoto et al., 
1987 ; l e e  et ai., 1998 ; Slotine, 1983). It has been 

confirmed as an effective robust control approach 

for nonlinear systems against parameters and load 

variations. However, some bounds on system un- 

certainties must be estimated in order to guaran- 

tee the stability of the c losed- loop system, and its 

implementation in practice has been caused an 

inherent chattering problem, which is undesirable 

in application. Several researchers have tried to 
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reduce the tracking error and the inherent chat- 

ter by smoothing a switching action and by desi- 

gning the perturbation compensator. In case of  

researches related with smoothing the switching 

action, an advanced sliding mode control algo- 

rithm with two dead zones and a saturation func- 

tion was proposed for reducing the chattering 

(Lee et al., 1998). However, this algorithm could 

not completely reduce the inherent chattering 

caused by excessive switching inputs around the 

sliding surface. And, a fuzzy sliding mode control 

algorithm was designed to reduce the chatter by 

using the fuzzy rules (Choi and Kim, 1997). 

The perturbation compensator is very effective 

method to reduce the inherent chatter without 

degrading the control performance (Slotine, 1984; 

Kim and Lee, 2000). A switching gain in SMC 

with perturbation compensator is much smaller 

than the gain in conventional SMC. Therefore, 

many researches have reported about the per- 
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turbation compensator such as the time delay 

control (TDC),  the disturbance observer (DOB), 

and so on (Elmali and Olgac, 1992; Hsia and 

Gao, 1990 ; Kim et al., 1996 ; Slotine et al., 1987 ; 

Youcef-Tomei and Ito, 1990). These convention- 

al perturbation compensators have some pro- 

blems. In case of the TDC, the full state feedback 

condition and accurate model of  a system is 

required. It is really undesirable when the sensor 

signal includes the noise. Another approach, the 

DOB, is formulated with respect to the linear 

system and the low pass filter in frequency do- 

main with output feedback condition. It is diffi- 

cult to design an adequate cutoff frequency of 

filter. And, the adequate cutoff frequency has to 

be selected according to a characteristic of  a 

system. 

In order to overcome these difficulties this 

study proposes a new perturbation compensator 

with adaptive scheme. In many case, the pe- 

r turbation components of  a dynamic system are 

the source of tracking errors and velocity errors of 

a controlled system because the control law is 

designed to usually compensate the estimated 

model. The main idea of the new perturbation 

compensator is to minimize the estimation error 

tion velocity error by using an observer-based 

fuzzy adaptive network (FAN) with adaptive 

scheme. This perturbation compensator is called 

as a fuzzy adaptive perturbation compensator 

(FAPC) in this paper. And, the perturbation 

error dynamic is systematically derived and the 

dynamic equation is addit ionally attached to the 

perturbation compensator. This is called a resi- 

dual perturbation compensator (RPC).  It is ex- 

pected that RPC could improve the performance 

of the perturbation compensator. As the propos- 

ed perturbation compensator is attached to the 

sliding mode control, an advanced sliding mode 

control scheme is proposed. The combination of 
sliding mode control and F A P C  gives the robust 

and intelligent control routine to get a good con- 

trol performance and reduce the chattering. Sys- 

tem modeling is necessary to design the control 

algorithm. Therefore, simple model of  the 6 - D O F  
parallel manipulator  including hydraulic actua- 

tors is derived by using virtual work principle, 

Fig. 1 6-DOF parallel manipulator for vehicle 
driving simulator 

kinematic transform, linearization technique. Un- 

known linear elements such as equivalent mass 

and damping coefficient are estimated by using 

the signal compression method (Lee and Aoshima 

1989; Park and Lee, 2002). Fig. 1 shows the 

developed 6 - D O F  parallel manipulator  for a ve- 

hicle driving simulator (Park et. al., 2001). To 

evaluate the control performance of  the proposed 

~lpp.toach tracking control is experimentally car- 
ano estlma-' 

ried out for the 6 - D O F  parallel manipulator. 

2. Model l ing of  6 - D O F  Paral le l  

Manipulator  

2.1 Dynamic model of 6-DOF parallel mani- 
pulator 

The 6 - D O F  motions are composed of linear 

and angular motions. The linear motions consist 

of longitudinal (surge), lateral (sway), and ver- 

tical (heave) motion. The angular motions are 
described by Bryant angles whose rotational se- 

quences are x, y, and z axis. The coordinates are 

set by an inertial frame and the moving frame 

attached to the upper plate. Here, we denote q as 
the 6 - D O F  coordinate vector with surge (u ) ,  

sway (v) ,  heave (w) ,  roll (a ) ,  pitch (/~), and 

yaw (~,). This vector is presented by 

q=[ / , / ,  V, W, a, ~, ~'] (1) 

Fig. 2 shows the coordinates and notations of 
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Fig. 2 Coordinate system of Stewart platform 

the Stewart platform. The inertial frame { B } (xb, 
Yb, Zb) is fixed at the base plate, and the moving 

frame { P }(xp, yp, zp) at the upper plate. If the 

rotational transformation matrix and the linear 

vector are presented by n~R and Ba, respectively, 

the length vector (x) of  the ith joint  is written 

a s  

x = B ~ = B a - B b , + g R  Ppi (2) 

where 

[ CpC~ - S~Cp Sp 
enR= i CrS~Sp + C~S, - S, SrSp + C~Cr - S, Cp 

[ - C,C, SB + S.S, C, SpS~ + S,S, C~CB 

The actuator lengths are computed by using the 

given position and orientation of the platform. 

This problem is called the inverse kinematics of  

a Stewart platform. The forward kinematics is the 

reverse of  the inverse kinematics. 

The forward kinematic problem is not easy to 

be solved, because the solution of  this problem 

may be analytically presented as the roots of 

16th or 40th order polynomial  and not unique 

(Nair and Maddocks, 1994). Therefore, numeri- 
cal method such as the Newton-Rhapson method 

is widely used in order to solve the forward 
kinematics. 

The dynamic equation of the Stewart platform 

considering all inertia effect is known as being 

very difficult to derive. Lebret derived the dyna- 

mic equation using the Lagrange method and 

virtual work principle (Lebret et al., 1993). This 

equation can be written as 

Mp(q)~+Cp(q, ~l) O+Gp(q)=JrUe (3) 

where Mp (q) ~ R  8×6 is the inertia matrix. Cp (q) 
R 6x6 corresponds to the centrifugal and Coriolis 

forces matrix. G p ( q ) ~ R  6×1 is the gravity force 

vector. J ( q ) ~ R  8×6 is Jacobian matrix, and Up 

(q) E R  ~×1 is actuator force vector. After doing 

an algebraic operation such as q= j -1o?  and a 

kinematic transformation, Eq. (3) can be express- 

ed as 

• ~p(q))?TCp(q,  ~l)~C-bG~,(q)=Up (4) 

where 

. ~ ,  (q) = ] -  r (q) M (q) ] -1  (q) 

Cp(q, (7)=]-r(q)M(q)ff--~-]-l(q) 

+ ] - r ( q )  C(q, ,~)]-~(q) 

Gp(q) =]-~(q) G(q) 

where x is a vector of  actuator length. 

Next, the dynamics of  actuator is considered. 

Assuming nonlinear part acts as a disturbance to 

the model, simple linear dynamics is obtained 

such as 

M£# + C ~  + Up=KsvUA (5) 

where Ma is the summation of  equivalent masses 

of all of the translational part in the actuator. 

Ca is the equivalent damping coefficient. Ksv is 

a spool constant. Therefore, the nominal dynamic 

equation of  the Stewart platform system including 

the manipulator  and actuator dynamics becomes 

Mr(q))?+Cr(q, t ~ ) . ~ + G r ( q ) = K s v U A  (6) 

where Mr=)~p +MA, Cr  = Cp + CA, Gr  = Gp (q).  
After separating a linear element and a non- 

linear element in Eq. (6), this equation can be 
re-expressed as 

M£¢+ C ~ = K s ,  Ua+ gr (7) 

where Mn and C, is the summation of all linear 

terms in Mr  and Cr. The perturbation ~ i s  com- 
posed of the summation of the nonlinear terms 
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among inertia moments, the Coriolis and centri- 

fugal force, the gravity force, the friction force, 

and external disturbance. 

2.2 Identification of 6-DOF parallel mani- 
pulator using signal compression method 

It is difficult to apply an impulse signal to real 

system because the magnitude of the signal is 

infinite and the period is very short. To solve 

these problems, an equivalent impulse signal is 

generated by using the signal compression method 

(Lee and Aoshima, 1989; Park and Lee, 2002). 

The equivalent impulse signal called test signal 

has a flat power spectrum in a desired frequency 

range and a low amplitude. The signal is also 

lasted for a long time as shown in Fig. 3. There- 

fore, the test signal is able to be applied to a real 

system in order to estimate uncertain parameters. 

To estimate uncertain parameters of  the par- 

allel manipulator  as shown in Fig. I, the test 

signal is supplied through the D / A  converter. 

The length of  the actuator according to the sup- 

plied test signal is detected by linear differential 

transducer and A / D  converter. The output signal 

of  actuator I is shown in Fig. 4. The output 

signal is changed into equivalent impulse res- 

ponses through the F F T  algorithm, the mathe- 

matical inverse phase-shift  filter in the frequency 

domain, and IFFT.  The element contributed by 

the nonlinear component is removed from the 

equivalent impulse response such as Fig. 5. As 
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comparing Bode plot of the transfer function 

from a model with that obtained from the equi- 

valent impulse response, natural frequency (~On) 

and damping ratio (~') are estimated as shown 

in Fig. 6. Then, to estimate more exact values the 

cross-correlation between the equivalent impulse 

responses from an assumed model and a real 

system is used. The uncertain parameters such 

as natural frequency and damping ratio of 2nd 

order system are continuously renewed by when 

the obtained equivalent impulse response is clos- 

est to the impulse response from the assumed 

model. Final ly the uncertain parameters are esti- 

mated when the cross-correlation is biggest. As 

these processes are applied to all actuators of  

the parallel  manipulator,  the natural frequency 

and damping coefficient of  each actuator are 

obtained. Uncertain parameters (M~, C~) of Eq. 

(7) are obtained by the natural frequency and 

damping coefficient. The linear c lose- loop system 

of  the parallel  manipulator  is expressed as 

L (s) K~Ks~ 
Gc (s) - U ~ ( s ~ -  M~s2+ C,s+K~K~ (8) 

where Kv is proport ional  control gain. 

The linear c lose- loop system dynamics of  the 

general mass-damper system is defined as follow : 

Gc (s) - o~ 
S2._[_ 2 ~O)nS + O)2 (9) 

Therefore, the equivalent mass and damping co- 

efficient of each actuator is calculated by 

M.--  K~,Ksv C,=2~4K~,KsvM, (lO) 
o~ , 

Table  1 Estimation results for parallel manipulator 
by using signal compression method 

I Natural 
] Damping Cross 

Frequency Ratio Correlation M~(kg) C,(kg/s) 
(rad/sec) 

actuator I 8 0.72 0.970 205.9 2372.7 

actuator 2 7.6 0.74 0.975 228.2 2566.9 

actuator 3 7.8 0.74 0.974 216.6 2501.1 

actuator 4 8 0.74 0.973 205.9 2438.6 

actuator 5 ~ 8 0.74 0.976 205.9 2438.6 

actuator 61 g 0.76 0.976 205.9 2504.5 
I 

The estimated uncertain parameters are listed in 
Table 1. 

3. Sliding Mode Control with Fuzzy 
Adaptive Perturbation Compensator 

3.1 S l i d i n g  s t a t e  o b s e r v e r  

The sliding state observer is to drive the state 

of dynamic model toward a desired state in spite 

of the perturbation. It is assumed that the per- 

turbations are bounded on upper limit by a 

known continuous function of the states. A 

sliding state observer for SISO system is a robust 

observer which estimates the state of  a nonlinear 

system (Moura et al., 1997 ; Slotine et al., 1987). 

The nominal scalar model of the system is ex- 

pressed as 

Mn.A~j+Cnjcj=u~+~. j : l ,  2, 3, 4, 5, 6 (11) 

where u~(=KsvUA) is control input. 

The actual perturbation ~ may be divided into 

estimated and unknown residual perturbation as 

{ff~. (x) ----- ~ ( x )  -+-z:J{ff~ (x) (12) 

where ~'~(x) is the estimated perturbation and 

zJ~ . (x)  is the unknown residual perturbation. 

The dynamic equation can be rewritten as 

. .  l 
x~=-~n. (-Cn.fici+u~+ {~j(x) +d{/ r j (x ) )  (13) 

The state space representation of a second order 

SISO system is as follows: 

.~t./=X2o - 

Cnd 1 I (14) 

where p~----u~+ ~ is modified control input. 

The sliding state observer is given by 

XZJ-- Cnj ^ 1 
Mn~- x 2 , + ~ - ~ . / z j  (151 

- k2~sat (£~j) - azj£,j 

where kt~, kzi, ate, a'zj are positive number and 
.~tj=,~t~--xt~ is the estimation position error and 
the saturation function sat (,glj) is defined as 

xtffl  xt ,  l, if I £tj  I > ~o~ 
sat (£tj) = t £~ff~o~, if I £~  1< ~o~ 
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where eo~ is an observer constant as the boundary 

layer of sliding mode. Using Eqs. (14) and (15), 

the estimation error dynamics are 

£ , ~ = £ z i -  kt~sat (£1~) - a~xt j  

_ 1 (16) 
x ~  = - k2~sat (£~) - a2jxa~- ~-T7 A 

~ran,d 

where the uncertainty ( C~ 
-- and- .... ~ XzJ- / is assumed to 

be part of  the residual perturbation zJ{Zrj. 

Fig. 7 shows the state space of the sliding state 

observer. 

The sliding mode of  the observer takes place 

on the line £ t~=0 of the state space as shown in 

Fig. 7. The conditions for the existence of  sliding 

mode are as follows : 

Y z ~  (k,s+ai~Yis) if . ~ l j ~ > 0  (17) 
.£zi > ( - k ~ + a u ~ )  if £ t~<0 

Once the sliding takes place on the line to be 

.~u=O and xt~=0, the error dynamics from Eq. 

(16) is derived as 

i d ~  (18) ~Cz~+ ( kz f f  k~) x2 j - -  M~,~ 

it is desirable to set the break point kz / k i  as 

high as possible in order to maximize the attenua- 

tion from d ~  to £2~. 

The stability of the sliding state observer is 

guaranteed by setting as 

kz~ > I - ~ - n  ,d ~/r~ [ (19) 

x~j 

k |  ] . . . . . . . . . . . . . . .  

ai~ij - ~ ~  
If ,~t; _< 0 

Fig. 7 

/ f  £,j > 0 

State space of sliding state observer 

The condition is derived as considering a steady- 

state of sliding mode (1 .xzJ I<kt, ' ) .  

It means that estimation errors can be reduced 

by increasing k2/k l  in spite of A ~ .  Therefore, 

the sliding state observer has robustness to the 

residual perturbation. 

3.2 S l i d i n g  m o d e  co ntro l  

The estimated sliding function is defined as 

g~ = ~,~ + c;~- (20) 

where cj is the desired control bandwidth and 

always positive, ~ j = . ~ l j - - x l ~  is the estimated 

position error and [x,,o -¢1,~] r is the desired 

motion cue for the j th  degree of freedom. The 

actual sliding function is presented by 

s ~ = b ~ + c j e j  (21) 

where e~(=Xl~--x laj )  is the actual position error. 

The modified control input (/2j) of Eq. (14) is 

selected by using time derivative of  the Ly- 

apunov function candidate be given by gj ~ j < 0  

to satisfy the boundary layer attraction condition 

to generate sliding mode. 

In case of  SMC without state observer and per- 

turbation compensator, the desired g~ for giving 

robustness on perturbation (Kim and Lee, 2000) 

is selected as follows: 

(22) ~s = - K ~  sa t ( s s )  q Mn,~ 

where 

K~ 
And, in case of SMC with perturbation com- 

pensator, a desired .¢j- for compensating the un- 

known residual perturbation must be selected as 
follows : 

,d~l~ (23) ~ = - K ~  sat (s~)  + M~ 

where 

However, in case of  the sliding state observer 
based SMC with the perturbation compensator, a 
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desired g for satisfying the boundary layer attrac- 

tion condition is selected as 

[ ku \ - 
g~=-K~ sat(g~) --t-~o~ )xzs (24) 

where the state estimation error is bounded by 

I ~z~ I< k~, K~ has to be selected as K~ ~ kx] and 
~oj 

sat(g~) is defined as 

=f  g#i g~ i, if l g~ I>e~ 
sat (s~) 

g#¢..  if l g ~ l< ¢ .  

sat (g~) is effectively used for anti-chattering pro- 

blem. ¢ca is a constant as the boundary layer of  

sliding mode. The estimated sliding function is 

represented by using the sliding state observer 

equations of  Eq. (15) and the estimation error 

dynamics of Eq. (16) as 

g~ =2~- ku sat (£u) - al.P3U 
(25) 

It is assumed that xu  and Xz~ are perfectly known 

at time t = 0 .  Therefore, all initial estimated state 

errors are zero. The observer starts on the sliding 

surface. And, if the gain kz/ was large enough, 

the estimated states always remain in the boun- 

dary layer (¢o~) of the state observer. Therefore 

sat(£u)  can be replaced by -~u/¢o~, Since the 

reaching phase is already eliminated, the attrac- 

tivity terms, a~u.£'u and az~.£'z~, are converge to 

zero. The assumed equations are arranged as 

follows : 

sat(£u)  "~-Jl~lj/~'O,/, aldXu~---0, a2J-~2j~---0 (26) 

Therefore, the estimated sliding function from Eq. 

(26) is arranged as 

g~ =£2~-- (klJeo~) xu-xxas  + c~ ( - ~ u - x x . )  (27) 

The time derivative of the estimated sliding func- 

tion is derived as 

g ~ : ~  - (ku/~oA ~,~-~1.+ c~ ( ~ 1 ~ - ~ . )  (28) 

Eq. (28) is re-written by using Eqs. (13), (16), 
and (26) as 

gs=- M,,,~C"s £2J+-~, ps 

-- [ k ~ /  ¢o~+ ca ( k u /  ¢o~) -- ( k u /  ¢os) 2].~u (29) 
- - ~ .  + cs (£~- -x i . )  

Using Eqs. (24) and (29), it is possible to com- 

pute the modified control input of Eq. (14) as 

f C n  j 
pi=M.a 1 ~ £~-K~ sat (gj) 

+ [k2~l~oj+ c~ (kul~oj) - (kul~o~) ~'].ft..,, (30) 
+ ~ -  cj ( £ z ~ - ~ )  } 

3.3 Fuzzy adaptive perturbation compensa- 
tor 

Our task is to use the F A N  to approximate the 

perturbation function ( g )  in Eq. (12), and pro- 

poses an adaptive control scheme to adjust the 

parameters of  the F A N  for minimizing the esti- 

mation error and estimation velocity error. 

The fuzzy system consists of  some fuzzy rules 

and a fuzzy inference system. The fuzzy inference 

system uses the fuzzy rules to perform a mapping 

from an input linguistic vector z =  [zl z2 "'- z,~ E 

R n to an output linguistic variable y ~ R .  The 

ith fuzzy I F - T H E N  rule is written as Eq. (31) 

(Jamshidi et al., 1993). 

R(°: if zl is A~ and z2 is A~ and ... 

zn is A~, then y is B ~" 
(31) 

where Af, AL AL and B i are fuzzy sets. The 

output is derived by the Takagi-Sugeno fuzzy 

model (Jang et al., 1997) : 

First, ~bi is calculated by using product in- 

ference. 

¢, =//~:, m; (zA 

Second, fuzzy basis value (~i) 

using normalization process. 

(32) 

is obtained by 

•, " ~,n ~ , ,  =- -~ a,) 

Z I ~ -) 

,i A~,L .  ' 

• / 

Z n  . t. 
. , r , ' !  

- A.;, , , , , ,  - - -  

Fig. 8 

I Y-.-; y(z) 

Structure of observer based FAN 
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~ =  : ;  (33) 

i = l  

Finally, the output of  fuzzy logic system can be 
obtained by 

h 

y (Z) = ~2. Oi~i = O T~ (34) 
i = 1  

where /aa1(z~) is membership function value of  
the fuzzy variable (z~), h is the number of the 
total fuzzy I F - T H E N  rules, 0 r= [0~ ,  02, "", Oh] 

is adjustable parameter vector, and ~ = [ ~ ,  ffz, 
• -., ~h] is fuzzy basis vector. The fuzzy logic 
approximator based on neural networks can be 
established. Fig. 8 shows the configuration of the 
FAN (Jang 1993). 

This network has five layers. At layer 1, nodes 
represent the values of  the membership function 
of total linguistic variables. Usually, bell-shaped 
membership function is widely used. Every node 
at layer 2, multiplies the incoming signals and 
sends the product result to the next layer. Every 
node at layer 3 calculates the fuzzy basis using 
normalization process. The ith node calculates 
the ratio of the ith rule's firing strength to the 
sum of all rules" firing strengths. At layer 4, every 
node including weighting factor (adjustable para- 
meter) multiplies the fuzzy basis. At layer 5, the 
single node computes the overall output as the 
summation of  all incoming signals. 

Figure 9 shows the perturbation compensator 
using the observer based FAN. Input variables 
are the estimated position and velocity, and out- 
put variable is the estimated perturbation. The 
perturbation function is presented by 

x r x, 

.. .~. .. , : 3 . : " , .  ~ ~-~ ,  
• .4j ." 4 I I  l---r ~ N  

n ~'~ . : ~  N 

~. x, 

Fig. 9 Fuzzy adaptive perturbation compensator 

¢ ~ c  (~:) = 0 ~ ( ~ )  (35) 

In general, the simple projection algorithm is 
represented as 

(1= - -  7"~(£) ( ~ ' - -  CFaec) (36) 

However, this scheme cannot directly apply be- 
cause t/r is unknown. In many case, the pertur- 
bation components of  a dynamic system are the 
source of  tracking errors and velocity errors of 
a controlled system because an estimated model 
without the perturbation is compensated by the 
conventional control law. Therefore, the main 
idea of  the new perturbation compensator is to 
minimize the position and velocity errors as com- 
pensating the perturbation which is estimated by 
the observer-based fuzzy adaptive network with 
an adaptive scheme. The adaptive scheme is cho- 
sen as 

O = - - y ( w ~ × ~ x + w 2 × x z )  ~(.~) (37) 

where (.01 and (o2 are weighting factors, and 7 is 
learning constant. 

Substituting the control input (u-----,u-- ~') into 
the nominal dynamics Eq. (14), the following 
relationship is obtained as 

M . j ~ +  C . o . ¢ -  #~= ~ . -  C p ~ c . j = z l ~  . (38) 

where additional perturbation compensator ~vc , j  
is defined as 

Cevc,s-~ Mn,.i~ + Cn,::~ -,us (39) 

where ~'m,c,~ is equivalent to the residual per- 
turbation dynamics, and systematically derives 
from a nominal model of  the system. This is call- 
ed a residual perturbation compensator (RPC) 
in this paper. Therefore, the total pertur bation 
compensator is defined as 

II f I 

_ _  ~ .y. 

" 4  .L, ,  ~a 

i xg..4 
L ~  8 lidtl~ll mtlbl Ob . . . . .  X , ' ~  ',l~. ~ ' • 

"~"~'X I~ 811dln9 mode controller 

I1~ perturbation ¢ompensltor , I~ ~ "~. 
q" /J 

Fig. 10 Sliding mode control with the proposed 
perturbation compensator 
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¢~= ¢~*c,j + $.c,j 

We expect that the residual perturbation (z:/~) 

converges to near zero by using the perturbation 

compensator. Namely, improving the perform- 

ance of  the perturbation compensator is expected. 

The control input (us) is derived as 

• / C . ~  ^ ,.- U~= lVl,a l ~ X ~ - -  Lxj s a t  ( g j) 

+ [ k z J e o j  + cj  (kl f feoj)  -- (kl~/eos) 2] .~l~ (40) 

+~..-ci(~-~c~) }- ~j 

Fig. 10 shows the overall scheme of  the sliding 

mode control with perturbation compensator. 

4. S i m u l a t i o n  And E x p e r i m e n t  

A tracking control is performed to evaluate the 

tracking performance of  the proposed control 

algorithm. The tuned sliding state observer para- 

meters kzj, kz~, ctl~, az~, and Cos of Eq. (15) are 

0.12, 2.4, 3, 5, and 0.002, respectively. And, the 

tuned control parameters cs, Ks, and co. of  Eq. 

(40) are 20, 50, and 0.02, respectively. The para- 

meters are selected by a trial and error method. 

The layer structure of  perturbation compensator 

using the observer based FAN is a 2-6-9-9-1 as 

shown in Fig. 9. The input variables are an 

estimated actuator position and velocity and an 

output variable is the estimated perturbation. The 

observer based FAN has 6 membership functions 

which are the bell shapes as 

u,,; = i / i +  [ (.~s + 1/0.5)2] s.~ 
/-tA~ : 1 /1+  [ (.£'J0.5)2] a.zra (41) 

~,Ag = i~ l + [ ( ~ -  1/0.5) 2] 3.~,s 

,ua~ = 1/1 -+- [ ( . ~  -I- 1/0.5)  2] 3.278 

p,a~ = 1/1 + [ (.~s/0.5)2] a.zrs (42) 

~ : =  l / ]  + [ ( ~ -  i/0.5) 233.~ 

Input variables of the fuzzy adaptive perturba- 

tion compensator are a normalized estimated po- 

sition and velocity. The range of values for these 

variables is from --1 to 1. And, a learning con- 

stant (7) of  Eq. (37) in on- l ine  learning para- 

digm is set as 0.95. And the tuned weighting 

parameters (co, a~) are 100 and 100, respectively. 

The payload of  the Stewart platform is about 

500 kg. The sampling time interval for control is 

selected by 10 msec. The reference position and 

velocity trajectory of  each actuator are shown in 

Figs. I1 and 12, respectively. Figures 13 and 14 

show the position and velocity error for each 

actuator when using the conventional sliding 

mode control as described (Slotine and Sastry, 

1983). 

u j =  - K ~  s a t  (ss) - c j ~ j +  l'~. (43) 

In spite of using the saturation function, the 

inherent chattering problem occurs in whole time, 

and the peak error is about - - l O m m  and not 

1 . 6  - 0 . 2  

¢yu.d*r 2 J 

1 . 6 - "  

i c~a t . e~  • 

1.3 " i / '\'~ 

' -0. t  - 4 - 
1.2 - - j  ' \  i 

1.1 I 
0 

Fig. 11 

2 4 S 
Time (sec) 

Reference position trajectories 

" 0 . 2  - -  

0 

Fig. 12 

\ / 

2 4 6 
Time (sec) 

Reference velocity trajectories 

/ 
f 
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converged to zero. The simulation results of the 

proposed sliding control algorithm are shown in 

Figs. 15~Fig.  18. Figures 15 and 16 show the 

position error and velocity error for each 

actuator. Figure 17 shows the estimated position 

errors. Figures 15 and 16 show that the proposed 

perturbation compensator is rapidly converged to 

actual perturbation. Between 0 sec and 0.2 sec in 

Figs. 15 and 16, the peak position and velocity 

errors occur, because the estimated velocity error 

in Fig. 18 is so large for 0.1 sec. However, the 

estimated errors and velocity errors become much 

smaller, as the estimated perturbation values 

obtained by using the perturbation compensator 

are close to the actual perturbation values. 

The results of the proposed SMC without 

compensating the residual perturbation ~RPc are 

shown in Figs. 19 and 20. Figures 19 and 20 show 

the position errors and the compensated pertur- 

bation by using only fuzzy adaptive perturbation 

compensator, respectively. The perturbation com- 

pensator is converged after 0.4 sec. Therefore, the 

peak error occurs about --6.4 mm in initial state. 

It shows that the residual perturbation term acts 

on improving the converge rate and the estimated 

perturbation error. 

Finally, performance of the perturbation com- 

pensator is evaluated by using the proposed com- 

2 

-2 

0 - 

-8  ..6 q ; 

- 1 0  ~ * ' ~  T i m e  ( s e e )  

0 2 4 6 8 10 Fig. 15 Position errors in the proposed 
Tim • (see) SMC + FA PC + RPC 

Fig. 13 Position errors in the conventional SMC 
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Fig. 14 Velocity errors in the conventional SMC SMC+FAPC+RPC 
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pensator and conventional compensator. The con- 

ventional perturbation compensator based on the 

time delay control scheme is defined as 

¢ ( x ( t )  ) = ~ r ( x ( t - L )  ) 
(44) 

=MgC(t-L) +C~(t-L) -~(t-L) 

where L is a sampling time of the digital con- 

troller and it is inevitable to adopt one step 

delayed signals to satisfy the causality. 

The simulation results for actuator I are shown 

in Fig. 21. The proposed perturbation compensa- 

tor is very fast and accurately converged to the 

actual perturbation. However, in case of the 

conventional perturbation compensator, the error 

of perturbation estimation is so large. Therefore, 

it is proved that the proposed compensator is 

valid. 

Next, control performance is evaluated by ex- 

periment. The control board is composed of a 

microprocessor and peripheral circuits with a 

DIO (digital input and output), an ADC (analog 

to digital converter), a DAC (digital to analog 

converter), a serial communication circuit and 

timers. The micro-processor of the control board 

is the TMS320C31. 
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L 
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The experimental results are shown in Figs. 

22~28. Figures 22 and 23 show position error 

and velocity error for each actuator, respectively. 

Figure 24 shows the estimated position errors. 

The compensated perturbation for each actuator 

are shown in Fig. 25. The estimated error is con- 

verged within 1.2 mm as shown in Fig. 24. And, 

the maximum position error is 3 mm. Figures 26 

and 27 show the position errors and velocity 

errors by using the observer based sliding mode 

control without the perturbation compensator as 

described in Eq. (30), respectively. The position 

peak error is about 10 mm and not converged to 

zero. Control torques of actuator 1 from the 

observer based sliding mode control and the 

proposed control algorithm are presented by 

dotted line and solid line, respectively, in Fig 28. 

Comparing the results, the magnitude of the in- 

herent chattering is substantially reduced by using 

the proposed control, whereas the chattering is 

seriously occurred in the observer based sliding 

mode control. 

An inherent chattering occurred in the conven- 

tional sliding mode controller is reduced by using 
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the sliding mode controller with perturbation 

compensator. It is verified that the performance of 

the proposed controller is a superior to the con- 

ventional sliding mode controller. 

5. Conclus ion 

This paper proposed the sliding mode control 

with the perturbation compensator to reduce an 

inherent chattering and improve control perfor- 

mance. The nominal constant parameters of the 

system are identified by using the signal com- 

pression method. A dynamic uncertainty badly 

800 -- 
• • - . . . . .  O b s e r v e r  b a s e d  8 M C  
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Fig. 28 Control torques of actuator I 

affected performance of a conventional compensa- 

tor. In this paper, the new perturbation com- 

pensator was proposed using the fuzzy adaptive 

network and on-l ine learning scheme. The pro- 

posed perturbation compensator was fast and 

accurately converged into the actual perturbation 

as shown in simulation results. Finally, a tracking 

control simulation and experiment were carried 

out in order to evaluate the performance of the 

proposed control algorithm. The proposed con- 

trol algorithm can reduce an inherent chattering 

as estimating the states and compensating a per- 

turbation in accuracy. Therefore, the designed 

sliding mode control can provide reliable trac- 

king performance. 
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Future work is to optimize the observer gains 
and control gains by using a pole assignment 
method and an optimization technique. 
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